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Axisymmetric compressible flow in a rotating 
cylinder with axial convection 
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The steady compressible flow of an ideal gas in a rotating annulus with thermally 
conducting walls is considered for small Rossby number E and Ekman number E and 
moderate rotational Mach numbers M. Attention is focused on nonlinear effects which 
show up when cr and eM2 are not small ((r = s/H,@, H is the dimensionless height 
of the container). These effects are not properly predicted by the classical linear 
perturbation analysis, and are treated here by quasi-linear extensions. 

The extra work required by these extensions is only the numerical solution of one 
ordinary differential equation for the pressure. 

Numerical solutions of the full NavierStokes equations in the nonlinear range are 
presented, and the validity of the present approach is confirmed. 

1. Introduction 
In recent years there has been considerable interest in compressible flows in a 

rotating annulus. Valuable analytical results were obtained within the framework of 
a linear theory, i.e. the limit of infinitesimally small Rossby number e. Sakurai & 
Matsuda (1974) and Matsuda, Sakurai & Takeda (1975) studied the steady-state flow 
in a container with perfectly conducting walls; the effects of insulated walls were 
considered by Matsuda & Hashimoto (1978) and Matsuda & Takeda (1978). Bark & 
Bark (1976) analysed the influence of the compressibility on the structure of the 
vertical Stewartson boundary layers. Spin-up and stability have been studied by 
Bark, Meijer & Cohen (1978) and Hultgren (1978). In a recent paper Conlisk, Foster 
& Walker (1982) analysed the flow field induced by sources and sinks on the vertical 
walls, differential rotation on the horizontal boundaries, and an axial applied thermal 
gradient. 

The applicability of this theory is formally confined to a narrow range of 
parameters. The prominent restrictions are e -4 H l d ,  imposed by neglecting the axial 
convection in the core, and E -4 M-2,  implied by linearization of the pressure term. 
(E is the Ekmann number, M the rotational Mach number and H the dimensionless 
length of the container.) The consequences of violating the abovementioned limits 
have not been emphasized in previous studies. Furthermore, verifications of theoretical 
predictions in the nonlinear range against experiments (almost unavailable) and 
numerical simulation are conspicuously lacking. 

The task of the present work is twofold : (1)  to emphasize certain nonlinearity effects 
and account for them in an extended asymptotic quasi-linear formulation; (2) to 
verify the asymptotic predictions by comparison with numerical solutions of the 
Navier-Stokes equations. 

Before presenting the details, we outline several results. A more general formulation 
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of the perturbation equation for small E has been obtained. This approach leads to 
one ordinary differential equation whose numerical solution, obtained by standard 
means and modest computer resources, provides the pressure, meridional velocities 
and density in the ‘extended core ’ (inviscid regions + B layers). This treatment 
overcomes the need of solving analytically the I.& layers, which is a very difficult task 
when the density p varies in these layers, as typical of higher rotational Mach number. 
Moreover, since we use the local p (a consequence of perturbing In P instead of P, 
where P is the pressure) and not the unperturbed solid-body density, our approach 
is free from the restriction sM2 + 1 .  Subsequently, the elliptic temperature equation 
can be solved. It is shown that the decoupling between the pressure and temperature 
fields cannot be justified for long cylinders. The axial convection of temperature and 
azimuthal momentum (incorporated in our formulation to remove the restriction 
n = E/H& 4 1)  does not influence the pressure field (to the leading order), but may 
affect considerably the temperature and the azimuthal velocity fields by increasing 
the influence of the Ekman layer on the boundary from which fluid is convected into 
the core. As convection dominates diffusion (u +m),  the temperature and azimuthal 
velocity in the core are independent of z ,  their value is that  of the ‘edge’ of the Ekman 
boundary layer, and matching the opposite Ekman layer requires an intermediate 
boundary layer of width f i l e  where convection is balanced by diffusion. This feature 
(which was also mentioned by Conlisk et al. (1982) and resembles that of a Boussinesq 
fluid studied by Riley (1967) and Homsy & Hudson (1969)) has been confirmed by 
the numerical solutions of the Navier-Stokes equations. 

I n  passing we note that the axial-convection terms may strongly affect the 
time-dependent development of the temperature and azimuthal velocity fields after 
the stage of spin-up (the E-! timescale). Thus, when e l&  > 1 ,  the dominant final 
adjustment of these fields may occur in a timescale e-’E-! rather than E-l. 

The phenomenon of large perturbations in the pressure field arising from small 
perturbations of the velocity and temperature fields has also been verified by a 
numerical example, which, again, agrees well with our theory (i.e. the expansion of 
In P ) .  

The good agreement between our solution of the approximate model and that of 
the full Navier-Stokes formulations gives credence to current theories about the 
behaviour of compressible rotating flows in the range of parameters under 
consideration. 

2. Formulation 
The objective is to  describe the steady flow field of an  ideal gas in a rotating annulus 

(figure l) ,  driven by imposed boundary conditions of velocity, stream function and 
temperature. 

Let r,*, r: and H* be the outer and inner radii and height of the container (here 
the asterisk denotes dimensional variables). The mean temperature and angular 
velocity of the outer wall are sZ* and T,*. The cylindrical system of coordinates ( r ,  4, z )  
rotates with sZ* around the axis of symmetry z.  If homogeneous boundary conditions 
are applied, a basic state of solid-body rotation is established and the resulting 
density at the outer wall is p,*, to be used subsequently as a reference quantity. The 
boundary conditions of interest, however, induce a motion of typical velocity EsZ*r,*. 

Upon introducing the dimensionless length, velocity, temperature, density and 
pressure via the scaling 

{q*, T*,p*,P*) = { ( ~ Q * r , * ) q ,  T,*(l+S), P,*P, (~Q~r,*’ppo*)P), 
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Inner wall (1) 

FIQURE 1. Description of the system. 

the equations of motion (Greenspan 1969) can be expressed as follows: 

[ ; El} (2.1) 
aa aa { ar a2 

continuity V - q  = -uMZr+s -u--w-+(l+sO)-' u - + w -  ; 

radial momentum 

azimuthal momentum (2.3) 

(2.4) 
1 

axial momentum EDW = -- 
M2 

energy 

P 
(2.5) 

state 

q E uP+vJ+wt 
5 
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and @ is the dissipation function. The variable a,  defined by 
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V l n P = W r P + E V a ,  (2.7) 

and the equation of state (2.6) have been used to replace W P  and Wp in the foregoing 
equations. 

The non-dimensional parameters are the Ekman number E = p*/p,* Q*rZ2, 
rotational isothermal Mach number M = Q*r,*/(R*T,*)f, Brinkman number 
b = 0.25 p* (Q*r,*)2/k*T,* and Prandtl number, Pr  = ,u*c;/k, wherep*, R*, k* and cg 
are respectively the viscosity, the gas constant, the coefficient of the thermal 
conductivity and the specific-heat coefficient at constant pressure. We assume that 
E is small, while Pr, M and b are of order unity. The (non-dimensional) height H 
of the cylinder is assumed to be large compared with the width of the horizontal 
Ekman layers (the opposite case is discussed by Israeli & Ungarish 1983). The effect 
of the gravity is neglected. 

The introduction of a is motivated by the fact that  the terms originally involving 
P and p become simple linear functions of a (with the exception of the coefficient of 
the viscous term), leading to  subsequent simplifications. The physical interpretation 
of this variable becomes more evident from the integrated form of (2.7) and use of 
(2.6) : 

p = CpsB(r) exp (€a)  (1 +eB)-' ,  (2.8a) 

P = CPsB(r) exp (sa) ,  (2.8b) 

where C is a constant and the subscript SB denotes solid-body rotation, i.e. 

(2.9a) 

(2.9b) 

The next step is obtaining the equations of motion for small E, attempting to 
circumvent possible restrictions imposed by non-uniform terms. 

The classical linear theory considers infinitesimal E. The corresponding equations 
are consequently obtained by substituting s = 0 in the system (2.1)-(2.5) with the 
subsidiary use of p =psB(r). Since from the standpoint of this approach 
exp (€a)  = 1 +€a, the interpretation of a in the linear theory is simply 

Ea = P/ PSB - 1 (2.10) 

(see (2.8) and (2.9) with C = 1). The advantage of this approach lies in the possibility 
to  proceed in the investigation by pure analytical means. On the other hand, the 
applicability of this theory to problems where E is small but finite encounters strong 
limitations, and in particular s / H @  4 1 and eM2 4 1,  as shown below. 

The formulation employed in the present study abandons several analytical 
benefits of the linear theory for gaining an extension in the range of applicability. 
The resulting system, however, is amenable to straightforward numerical solution by 
standard methods (yielding great numerical accuracy by very modest computational 
resources). 

I n  this formulation the genuine interpretation of a, including the term exp (€a) in 
(2.8), is retained for the following reasons. Since a = O(M2), as implied by (2.7), the 
perturbations of pressure and density are accordingly larger than those of velocity 
and temperature when M2 is not small. This imposes the restriction EW 4 1 on using 
(2.10) instead of (2.8). This restriction of the linear theory obviously disappears when 
the linearized form (2.10) is not employed. (It can be shown that the present approach 
implies the formal expansion of In P in powers of E ,  while the linear theory uses a 
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similar expansion for P.) Note, however, that the term €6’ in the right-hand side of 
(2.8~) can be neglected, to leading order, for calculating p. 

A different type of restriction on 8 is introduced because of the small E.  The velocity 
components are of different orders of magnitude with respect to E ,  and thin boundary 
layers, implying steep derivatives, are present (e.g. in (2.1) cw may dominate u and 
e ae/ar may be larger than 1). Unfortunately, if all the terms suspected of non-uniform 
behaviour are retained in (2.1)-(2.5), the remaining system is no more amenable to 
analysis than the original one, despite the small (but otherwise unrestricted) value 
of 8. 

To proceed, the non-uniformity arising from small E is initially ignored, allowing 
for the cancellation of all the terms multiplied by 8 in (2.1)-(2.5). This system is 
slightly different from the linear one (recall our treatment of the density) and is 
referred to thereafter as ‘quasi-linear 1’. The appropriate analysis is given in 53. 
Subsequently, the neglected terms are reconsidered, and the leading ones are also 
included in the ‘quasi-linear 11’ system, resulting in an improved theory. Finally, 
a verification via comparison with numerical solution of the full Navier-Stokes 
equations is performed. The ad hoc formalism of the present approach is vindicated 
by the good agreement obtained in this verification. 

The present approach requires an iterative solution of the equations, since a cannot 
be obtained separately. This, however, is easily performed on a computer. The 
boundary condition for a, reproduced by the constant C in (2.8), is specified by the 
amount of mass in the cylinder. 

3. The quasi-linear I model 
This approximation turns out to be a direct extension of the linear case, which has 

been studied by Sakurai & Matsuda (1974), Matsuda & Hashimoto (1978), Matsuda 
& Takeda (1978) and others. Initially, we recover previous results in a slightly more 
general way for several types of boundary conditions. Subsequently, we define an 
‘extended core ’ which includes the ‘inviscid cores ’ and the outer Stewartson layers 
in the whole cylinder, and show that the pressure and velocity fields in this core can 
be obtained by solving a single ordinary differential equation and a single linear 
elliptic partial differential equation. Furthermore, we point out that the pressure and 
the temperature equations in this extended core are coupled unless H 4 ( E / p ) - i .  
Finally, we briefly discuss the relative magnitude of the neglected nonlinear terms, 
in order to estimate the range of validity of this model. 

3.1. The horizontal Ekman layers 

The analysis of the flow in this layer is presented in Appendix A. The results that 
will be subsequently used are the matching conditions with the external ‘core’. 

Introducing the useful combination 

A = V+e, (3.1) 

denoting boundary conditions by capital letters, and using subscripts w for the wall 
and c for the core at the ‘edge’ of the Ekman layer, we obtain : 

0, = v,+(h,-A,) (1+br2)-’, (3.2) 

8, = 8, -2br(Ac - A w )  (1 + br2)-’, (3.3) 
5-2 
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where A, = V,-$Sw, J ,  is the mass flux transported by the Ekman la.yer, and s = 1 
and - 1 for the top and bottom plates. The value of A, is O( 1). 

3.2. The geostrophic balance 

Outside the Ekman layers we expect a I q I /az - H-' I q I and a I q I / a r  = 8; 1 q I , where 
8, is the characteristic lengthscale in the radial direction (8, - 1, L$Hi or (EH?) .  

From the equation of azimuthal momentum we obtain 

E 

P 
u * -(8,-2+H-2)21. (3.6) 

Thus I u I 4 1 v I when IS,, H % ( E / p ) i .  Consequently, the viscous term of the radial 
momentum equation is negligibly small compared with the Coriolis term, and the 
radial momentum equation outside the Ekman boundary layers reduces to the 
geostrophic balance : 

1 aa 
W ar -2v+rO = --- ( =  - 2 4 .  (3.7) 

The axial changes of a are pronounced only in the vertical shear layers. In  the 
main flow region (the 'extended core' defined in $3.4) each side of the geostrophic 
balance (3.7) is z-independent. 

3.3. The 'inviscid' core 

We consider the flow outside the Ekman layer, thus a/az = O(H-'), and assume 
= O(1). Since the axial velocity induced by the Ekman layers is 

O [ ( E / p ) i  (1 + M 2 )  v], the equation of axial momentum implies that  the axial variation 
of M-2a  is much smaller than v. Consequently, the geostrophic radial balance (3.7) 
is of the form 

Note that (3.8) and ( 2 . 8 ~ )  imply p = p ( r )  to this order of approximation. In addition 
we use the azimuthal momentum and the energy equations : 

(3.10) 
E 

P 
- 4bru = -we .  

Combination of (3.8)-(3.10) yields: 

(3.11) 
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Using the last two equations, we obtain 

a28 a28 1+3br2 ae -2br d 1 d -+-+ _ -  (3.12) 
ar2 az2 (1 + br2) r ar 1 + br2 dr r dr "' 

The boundary conditions for (3.12) on z = 0, H provided by the value of 8 at the edge 
of the Ekman boundary layer, are explicit functions of A, cf. (3.3). Furthermore, (3.12) 
involves A, and (as it will be shown) the corresponding boundary conditions on 
vertical walls are also related to A. This points out the importance of A for the solution 
of the flow field. 

Computation of A is possible via global mass continuity : 

(3.13) 

where YT and Y, are the given boundary conditions on the stream function at the 
top and bottom disks respectively, and c, are the radial velocities in the Ekman 
boundary layers, and u,,,, is the radial velocity outside the Ekman layers, given by 
(3.11). 

Integrating (3.11) and using the values of the stream-function correction in the 
Ekman layers, (3.5), we obtain 

Recall that AT and A, are the prescribed values of v - *8 on the top and bottom disks, 
of magnitude O(1). 

The last term in (3.14) couples the equation for A to equation (3.12) for 8, unless 
the height H < (E /p ) - i .  When H < ( E / p ) - ;  the second term in the right-hand side 
of (3.14) can also be ignored, resulting in 

(3.15) 

In incompressible or in isothermal cases the coupling term does not appear (Moore 
& Saffman 1969; Toren,& Solan 1979). In these cases A = v.  

3.4. The out@ Stewartson I!$ shear layers and the extended core 

The term ?jH(E/p)'d[r-' d(rA)/dr]/dr which appears in (3.14) has been neglected in 
the 'inviscid core' where d/dr = O(1). Consequently, A in (3.15) has the same 
discontinuities as the symmetric component of the boundary conditions on the disks, 
namely A, + A, and Y, - PB and does not take into account boundary conditions on 
the vertical walls or at the axis of rotation. 

The term mentioned above is 0(1) in 'vertical' shear layers of radial width 
8,. - Hi(E/p)!.  The Ekman-layer adjustment for these vertical boundary layers yields, 
by (3.4), w - (E /p ) fH- i .  Inserting this value in the equation of axial momentum, we 
find that the axial changes of a are negligibly small ; therefore the governing equations 
are again (3.8)-(3.10), and (3.11)-(3.14) are valid in the above vertical shear layers. 
Reconsidering the coupling term in (3.14) (a8/ar is now O [ ( E / p ) - f H + ] ) ,  we find that 
its order of magnitude is [ (E/p) iH] i  and can be neglected for H < (E /p ) - i .  In this 
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range the equation for A can be solved separately. It is recalled that the same 
restriction on H allows us to ignore the coupling term in the inviscid core. 

The equation for h is now: 

(3.16) 

Following Moore & Saffman (1969) and Toren (1976)’ we note that (3.16) is valid not 
only in the outer Stewartson layer, but also in the inner core (where the first term 
becomes negligibly small). The conclusion is that this equation defines an ‘extended 
core’ which covers, in fact, the whole flow field with the exception of the Ekman layer 
and the inner Stewartson layer. Accordingly, the boundary conditions for (3.16) must 
be given at  r = rI and r = 1. But on these boundaries h ( = v - $8) may be a prescribed 
function of the axial coordinate z, while (3.16) requires z-independent boundary 
values. Our expectation is that the appropriate boundary condition is the corres- 
ponding z-averaged value, and further analysis of the inner Stewartson layer (see § 3.5) 
shows that this is indeed the case. Thus 

(3.17) 

where rb = rI or 1 and vb, 8, are the boundary conditions for v and 8 at these 
positions. 

The temperature 8 in this ‘extended core’ is given by the elliptic equation (3.12). 
The boundary condition on z = 0, H provided by the values of 8 at the edge of 
the Ekman layers, (3.3)’ are explicit functions of A. On the vertical boundaries 
r = TI, 1 ,  8 matches the value at  the edge of the inner thermal Stewartson layers 
(see $ 3 4 ,  namely 

In the case rI = 0 the appropriate boundary conditions are dh/dr = 0 and a8/& = 0. 
After computing A using (3.16) and 8, as described above, u can be obtained from 

(3.11) and v from v = A++r8. Thus the flow field in the ‘extended core’ is obtained 
by solving an ordinary differential equation of the second order for the pressure and 
an elliptic equation for the temperature. This formulation enables us to investigate 
the flow field induced by complicated boundary conditions in a compact and 
straightforward manner. 

3.5. The vertical shear layers 

In the ‘extended core’ the axial component ( a a / a z )  of the pressure gradient was 
neglected. Consequently this core cannot fulfil the imposed boundary condition on 
the vertical boundaries. Moreover, discontinuities in the horizontal boundary 
conditions give rise to ‘jumps’ in u and in w. In order to overcome these difficulties 
vertical shear layers of inner Stewartson type must be introduced into the solution of 
the extended core. The thickness of these layers is O[(HE/p(r,))i], where rl denotes the 
radial position of the boundary layer. These regions are considered in Appendix B. 
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3.6. The range of validity 
The order of magnitude of the flow-field variables resulting from the foregoing 
analysis is used to estimate the possible contribution of the discarded terms. The 
condition that these neglected terms remain relatively small leads to constraints of 
the form E 4 . f (E /p ,  H ,  b, W). If 6 and M are O( l),  we find the following restrictions. 

1 .  In the inviscid core, E 4 H ( E / p ) k  When E approaches H ( E / p ) i  from below, 
the axial convection terms sav/az and Eae/az become pronounced in the equations 
of azimuthal momentum and of energy respectively. However, for the Ekman layers 
that connect the inviscid core to the horizontal boundaries the quasi-linear approach 
is uniformly valid. (In the homogeneous incompressible fluid and in the isothermal 
cases one obtains av/& = 0, the equations of momentum can be decoupled from the 
energy balance, and the present restriction does not show up.) 

2. In the I& Stewartson layers, E 4 H i ( E / p ) f .  The quasi-linear approach for the 
Ekman layers in this region is also restricted by this relation. A similar non-uniformity 
appears in the homogeneous incompressible fluid, and was studied by Barcilon (1970), 
Bennetts & Hocking (1973) and others. The present compressible problem is more 
complicated, because a large number of terms become involved as E approaches 

3. In the thermal I$ layer, E 4 Hi(E/p ) ) .  Most of the convection terms become 
pronounced as E approaches Hi(E/p ) i .  The same occurs in the respective Ekman 
layers. 

Stewartson layer, E 4 Hi(E/p)6.  The behaviour is similar to that 
described in the above paragraph. 

~4 ( ~ / p ) f .  

4 .  In the 

4. Inclusion of axial-convection terms in the quasi-linear 11 model 
4.1. The governing equations 

The foregoing considerations indicate that when cr = € / H a  is not small, the leading 
balance of momentum and energy in the ‘inviscid core’ is 

ae E 

az P 
E Prw--4bru = -V28. 

(4.3) 

(4.4) 

Homsy & Hudson (1969) considered the thermal convection in a Boussinesq fluid 
( 6 + O )  by including the first term in (4.4) but still neglecting the corresponding term 
in (4.2). This procedure implies the formal assumption that Pr % 1, which does not 
hold for gases. However, since the equation of azimuthal momentum was not 
explicitly used, the results presented there will not be affected by the neglected term 
even for Pr = O( 1) .  In the present case, owing to the compression work, the first term 
in (4.2) is quite important when Pr - 1.  

An order-of-magnitude analysis of (4.3) shows that we can neglect the axial changes 
of a, obtaining for the radial equation (4.1): 

-2v+re = -2A(r). (4 .5)  
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u =  2(1+br2) [ (9 p (& dr [I r dr ( r ~ ) ]  + E) + g w r ( ~ r  - 1 ) 

As expected, the last term in (4.6) is negligibly small when u < 1 .  Apparently this 
term becomes dominant when u increases, and u = O(E@ shows up in the core. But, 
as we shall show later, this is not the case, since M / a z  tends to zero as u becomes 
large. However, even for u = O ( E ~ @ ) ,  the geostrophic balance (3.7) is valid. 

Elimination of u from (4.4) and (4.6) gives for 0: 

a2e i+3br2 ae -+ 
ar2 (1+br2)r  ar E/p 1+br2 az az2 1+br2dr  r dr ' 

(4.7 ) 

As for the u = 0 case, a single equation for A can be obtained via the mass-continuity 
equation (3.13). The appropriate values of the integral in the Ekman boundary layer 
are given by (3.5). For u,,,, we use (4.6) to obtain 

E w--+- Pr+br2 ae a28 = - 2br d " d(r4]  

The last term in the left-hand side is negligible compared with the first for E Q 1 , and 
the remaining equation is exactly (3.14). We may conclude that the axial convection 
in the inviscid core has only an O(E)  influence on the pressure gradient (reproduced 
by A )  independent of the value of 6. 

Furthermore, we find that the equation for h obtained for u+O in the extended 
core is also valid in the present case. The real restriction on this equation is imposed 
now by the non-uniformity in the fi Stewartson layer, which appears as E approaches 
H i ( E / p ) f .  On the other hand, equation (3.15) for h in the inviscid core is valid for 
all E < 1. 

Now we claim that equation (4.7) for 0 is asymptotically valid in the extended core, 
for the following reasons. The validity of this equation in the inviscid core was 
explained above. In the fi shear layer w - (E/p)f H 3 ,  a28/ar2 - ( E / p ) - f H - ' ,  and the 
relative contribution of the convection term is 

(4.9) 

Since the restriction of the present approach in the extended core is E Q Hi(E/p)!,  
the ratio (4.9) is small. Accordingly, (4.7) provides the extension of the temperature 
equation to the case E 4 Hi(E/p)f, in conjunction with the equation (3.16) for A. The 
boundary conditions for (4.7) are obtained via the thermal boundary layer (for 
which the linear approach is valid as E 4 E?) and via the Ekman layers. 

4.2. The $ow jield for large u 
It was shown above that the axial convection in the core has no influence on the 
pressure distribution h and on the axial mass flux pw. On the other hand, the 
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temperature field 0 and the azimuthal velocity v are, as expected, strongly influenced 
by the axial convection as u increases towards and above 1. 

Consider the order of magnitude of the terms in the elliptic equation (4.7), for which 
Dirichlet boundary conditions are imposed. When u is small the temperature field 
is dominated by conduction. As u increases, the thermal properties on that boundary 
which ejects the axial flux are convected into the core and dominate the conduction 
from the other boundaries. (The case of symmetric horizontal boundary conditions, 
when no axial velocity is present, is eliminated from this discussion.) 

When u is large there is no term in (4.7) to balance the axial convection, therefore 
the leading balance of the temperature in the core yields: 

= o or e = ep). (4.10) 

This solution can satisfy the boundary condition imposed by the horizontal plate from 
which mass is convected into the core, at z = 0, say. In  order to match the boundary 
condition (3.3) on the edge of the Ekman boundary layer on the opposite plate, z = H, 
say, an additional horizontal boundary layer is required, where 

ae 
az 
- 

(4.11) 

We assumed that w > 0, therefore (4.11) describes a boundary layer of thickness 
O [ ( E / p ) f / e ] ,  where the Ekman region is a thin sublayer. Matching the solution of 
(4.10) and (4.11) to the boundary condition at the edge of the Ekman layer, we obtain 

(4.12) 

Here e(z  = 0) and 8 ( z  = H) are the values at the edge of the lower and upper Ekman 
boundary layers, given by (3.3). A similar result was presented by Conlisk et al. (1982) 
for a particular case. This type of horizontal thermal boundary layer in stratified or 
slightly compressible fluid unbounded radially was also investigated by Duncan 
(1966), Riley (1967) and Hudson (1968a, b). Barcilon t Pedlosky (1967) showed that 
such a temperature distribution is incompatible with the boundary conditions on 
insulated vertical walls, and Homsy & Hudson (1969) matched it to thermally 
conducting vertical walls. 

5. Numerical results 
5.1. Example 1 

A numerical experiment was made in order to verify the predicted features of the 
flow field for u P 1. The system is presented in figure 2 (a) .  The flow is induced by 
antisymmetric thermal perturbations Is0 1 = 0.2 on the horizontal walls, while the 
outer wall is held at a constant (zero) temperature. The solid boundaries are 
stationary with respect to the rotating frame. The isothermal rotational Mach number 
at the outer boundary is M = 2 41.4,  and the Ekman number based on the maximal 
density is E = Other constants of the flow are y = 1.4, Pr = 0.70. The numerical 
steady-state solution of the full Navier-Stokes equation was obtained by a finite- 
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difference time-marching scheme which conserves mass, momentum and total energy, 
similar to that used by Toren & Solan (1979). A staggered, stretched mesh was used, 
having 15 and 10 intervals in the radial and axial directions respectively. 

Numerical results are presented in figure 2, and compared with approximate results 
obtained from the asymptotic approach. The representative value of E is 0.2 (taking 
18 I = 1 on the horizontal boundaries), therefore cr = e / B H  = 20, and we expect to 
find a pronounced influence of the thermal convection on the temperature and 
azimuthal velocity fields. 

The stream function $( = 2n:j:prudz) is given in figure 2(b). The horizontal 
Ekman layers and the vertical a boundary layer are clearly observed. In the core 
we find 2apur = a@/& x 0, as expected from (3.15) and (3.11) (here h,+A, = 0), 
while $ - & (owing to (3.5)). The radial distance between the streamlines increases 
towards the axis, since $ - pr2. No influence of the convection on $ is observed. 

The temperature and azimuthal velocity fields are non-symmetrical with respect 
to the midplane z = i. For example, the isotherms shown in figure 2(c )  tend to 
concentrate near the lower plate, forming a thermal boundary-layer region of typical 
thickness 0.15, as a consequence of the axial thermal convection. More details are 
given in figures 2 (d, e, f), which show profiles of 8, v / r  and was functions of z at certain 
radial positions; the first two are located in the inner core and the third in the fi 
region of the extended core. The asymptotic solution (dashed lines) is in good 
agreement with the numerical results (discrepancies of less than 15 yo were obtained, 
which can be expected for E = 0.2). We recall that the classical linear theory predicts 
linear axial variations of v and 8 in the core. 

We see (figure 2f) that w in the core increases slightly with z. This results from 

't &e, = +0.2 

v,=o ~ = 1 0 - 4  ~ = 2 2 / 1 . 4  

(4 
FIGURE 2 (a). For caption see p. 136. 
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FIGURE 2 (e). For caption see p. 136. 
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FIQURE 2. Example I: (a) boundary conditions; ( b )  stream function, lo4€@ = 2.02(2.02) 18.8, 
numerical solution; (c) isotherms €0, numerical solution ; ( d )  temperature profiles at constant radial 
position ; (e) angular-velocity profiles at constant radial position ; (f) axial-velocity profiles at 
constant radial position. (-, Numerical solution ; ---, approximate solution.) 

the temperature distribution, which causes p to decrease with z. But the axial mass 
flux pw is constant with z. We found that this feature of w can be reproduced by the 
asymptotic analysis by calculating pw a t  the edge of the Ekman layers instead 
of w. The asymptotic prediction for w is less accurate than that for v or 8, since w, 
being O(&), is quite small in the interior. 
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5.2. Example 2 
In the previous example the flow was induced by antisymmetric boundary conditions; 
therefore the perturbation of the pressure gradient A was zero (to the leading order), 
according to (3.15). In  the present example (figure 3a) we consider the flow induced 
by the bottom disk, which rotates 20% slower than the other walls; the theory 
predicts a 10% velocity perturbation in the interior, so that the effective Rossby 
number is E = 0.1. Thus the right-hand term in (3.15) is not zero, and a perturbation 
of the radial pressure gradient is expected. The Ekman number is E = 2 x the 
rotational isothermal Mach number is M = 2 1.4, the Prandtl number is Pr = 0.70 
and y = 1.4. 

The relative perturbation of the pressure is shown in figure 3 (b). This perturbation 
reaches a value of about 35 %, which is about iM2 times larger than the perturbation 
of the angular velocity. The approximate solution, obtained by the expansion of In P 
in powers of E ,  is in excellent agreement with the numerical computation. Accordingly, 
the meridional flow, computed directly from the solution of the pressure (in fact, 
of A )  is also in good agreement, as shown in figures 3 ( c ,  d ) .  

Good agreement was obtained also for the angular velocity (not shown here). 

6. Discussion 
An approximate analysis of the steady rotating compressible flow in a thermally 

conducting cylinder is performed and verified by numerical solutions. 
The present model efficiently relaxes the most severe restrictions of classical linear 

theory, namely EAP + 1 and u + 1. The first restriction is removed by employing the 
perturbation of V In P (reproduced by the variable a) and retaining the perturbed 
density p instead of the approximation pSB in the equations. The latter restriction 
is treated by incorporating the axial-convection terms in the model. 

This extension of the range of validity for quite general boundary conditions is 
achieved for the additional price of numerically solving one ordinary differential 
equation for the pressure. The solution is obtained in the ‘extended core’, which 
unifies the inviscid regions and the shear layers under equations valid in the 
continuous domain from boundary to boundary. Note that the present method of 
solution may be more efficient than the classical linear analytical method even in the 
range where the latter is applicable, especially when p varies considerably in the 
layers. 

The predictions of the present model have been compared with numerical solutions 
of the full Navier-Stokes equations in the non-trivial range E N 0.1, CT N 20 and 
eM2 N 0.5. The good agreement obtained in these comparisons justifies the somewhat 
ad hoc formalism of the present approach and strengthens the confidence in the 
applicability of perturbation theories to the problem under investigation. In particular, 
it is shown that the axial-convection terms, which become pronounced when u is not 
small, do not affect the pressure and the axial-velocity field equations (obtained for 
u = 0), but have a considerable influence on the temperature and azimuthal velocity 
fields. 

The present approach is limited by the non-uniformity of the convection terms in 
the inner and outer Stewartson layers, namely E 4 Hi(E/p) i  and E < Ht(E/p):. The 
extension of the asymptotic theory beyond these limits is apparently an extremely 
difficult task because of the large number of nonlinear terms that are involved. The 
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i 
1 0 

FIGURE 3. Example 11: (a) boundary conditions; ( b )  (P/PsB)-l at z = 1, where P is the 
pressure and SB denotes solid-body rotation (0, numerical solution; ---, approximate solution) ; 
(e) stream function, - 1@s@ = 3.49 (3.49)31.4, numerical solution; (d) stream function, 
- lo4 q h  = 3.72 (3.72) 33.48, approximate solution. 

investigation of this range calls for numerical solutions, for which the present 
approach can be used as a starting condition and as a basis for an improved-accuracy 
numerical scheme (Israeli t Ungarish 1981). 

1 
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Appendix A. The horizontal Ekman layers 

of the cylinder; thus 
We denote by tildes the boundary-layer ' corrections ' near the horizontal boundaries 

{u, v, w, 8, a) = {u, +ii, v, +v", w,+ ZZ, 8,+ 0, a c + q  

where ( )c is the value of the variable at the edge of the boundary layer. We assume 
that (-) vary on an axial scale 8, (which turns out to be - (E /p ) i ) ,  while the radial 
scale is 6,, such that 8, -4 8,. 

The corresponding equations of motion are : 

Let us consider the 'bottom' boundary, z = 0. The same analysis can be repeated 
for the top boundary. The boundary conditions for these equations are 

{ ~ ~ , V " , Z Z , B , O C " ) + O  as z+co ,  (A 6 a )  

(A 6 b )  {c, v", c, 8) = { -uc, V,-vc, w,-wC, 8,-8,) a t  Z = 0. 

Here V,, W, and 8, are the (specified) values on the bottom boundary. No-slip and 
perfect thermal conductivity at the solid surface were assumed. 

We note that (A 3), (A 5 )  and the boundary condition at z+oo imply the following 
relation : 

(A 7) 
B - = -2br. 
v" 

(It is worthwhile to mention that a similar relation also holds for the correction 
variables of the vertical boundary layers.) 

Integrating (A 4) from z to co, anticipating p = p ( r )  and using (A l ) ,  we find 

Therefore the first term in the right-hand side of (A 2) can be neglected in comparison 
with the second term, leading to the well-known result that the pressure in the 
boundary layer is induced by the outer core. 

Now a single equation for ii can be obtained from (A 2), (A 7) and (A 3), namely 

a4c 
-++C = 0,  x4 
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where [ is the boundary-layer stretched coordinate : 

[ = ( E / p ) b  (1 + br2)f z. 

It will be useful to introduce the combination 

The solution of (A 8) satisfying the boundary conditions yields 

.ii = D(r)  ( 1  + br2)-t e-b sin [, 

v" = D(r) (1 + br2)-' e-5 cos c, 
& = - 2brD(r) ( 1  + br2)-' e-c cos [, 

where 

(A 10a) 

(A l o b )  

(A 1Oc) 

Additional terms of similar form but O(u,) which are contributed by the radial 
velocity boundary condition were neglected, since the equation of azimuthal 
momentum implies u, + v,. 

The values at the edge of the boundary layer are obtained by setting 6 = 0: 

V ,  = VB-D(r) ( 1  +br2)-', 

8, = @B+ 2brD(r) ( 1  + br2)-I, 

(A 12a) 

(A 12b) 

and depend on the boundary conditions and A,. By integration of (A 10a) from 0 to 
00 the value of the stream function at the edge of the boundary layer is 

8, 
$, = 2npr .ii dz = npr (9' (1 + br2)-i D(r) .  

0 

From (A lo), the equation of continuity (A 1 )  and the boundary conditions we obtain 

Appendix B. The flow in the vertical I& shear layers at r = rl 

We denote by ( - )  the linear corrections in this layer. The equations of motion are 

E a2d 
-4br1ii = -- 

p ar2 
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The relative changes of p in this layer are O[exp ( W r ,  S)], where S = [ H E / p ( r , ) ] f .  For 
S < M-2r;1, p ( r )  can be approximated by p(r,)  in (B 3)-(B 5), and the last term in 
(B 1) can be neglected, resulting in a system similar to that treated by Hunter (1967). 
Otherwise, a more complicated treatment is required, as described by Bark & 
Bark (1976). For the sake of simplicity, let 6 4 M-%y1, and introduce the local 
incompressible stream function 

u = -  1 a$ w=-- a$ 
aZ ar 

and the local Ekman number El = E/p( r l ) .  By elimination among (B 1)-(B 6), a 
single equation is obtained for $: 

a6$ 4( 1 + br:) a2$ -+ ax6 E: a22 = O y  

where z = I r -r1  I .  
Matching to the outer flow requires 

From (B 3), (B 5) and (B 8), we obtain 

therefore 

Boundary conditions for (B 7) on z = 0, Hare obtained by matching with the Ekman 
boundary layers. Solutions of (B 7)  satisfying the boundary condition are of the form 

$ = C,  exp(-(x)+C, exp(-+(x) cos (B 10) 
where 

f; = (1  + br$ (-)', 2x1 

El H 
where I is an integer. C,, C2 and $ are (real) constants. Finally, we note that the orders 
of magnitude of the variables that satisfy the equations of motion are 

The value of A is 1 for the layer required to match the boundary condition on h (this 
layer also matches 0 and v), and ,!&H-: for the layer that matches and smoothes u 
and w. The former layer is required for the solution of A in the extended core, and 
will be discussed in some detail below. 

B. 1 .  Matching h 
The boundary conditions at r = rb are 

i + h o  = v b ( z ) - ~ b @ b ( z )  hb(Z), 

$+p = 0, 

(B 13a) 

(B 13b) 

(B 13c) 

d+dO = @,(z), (B 13d) 
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where ( )" is the corresponding 'outer' solution in the extended core. Equations 
(B 13a,d) imply the boundary conditions for the azimuthal velocity, namely 
d+v0 = vb(z).  Here vb(z) and 8&) are the prescribed values of v and 0 at r = rb, and 
rb = 1 or rI. 

In the outer region $" and wo are small compared with @ and Zir. Therefore (B 13 b,  c )  
require that, to leading order, # and a@/& equal zero at r = r,,. For the same reason, 
the leading term in # must vanish at z = 0, H. These facts establish the recirculating 
feature of the flow in this region. The solution satisfying the homogeneous boundary 
conditions is 

2 

4 3  

00 

exp(-86,x)--exp(-!j8,x)cos 
n-1 

2 cn 
i= (l+br$ C AnS, cos exp(-8,x)+-exp(-!$,x) cos 

4 3  
(B 15) 

n-i 

where 
8, = (->" 2nx (1 + br$. 

El H 
Imposing the boundary conditions (B 13a, d )  we obtain 

l H  
ho = Jo Ab(Z) dz, 

Equation (B 16) and (B 18) provide the boundary conditions for the solution of the 
extended core. In  the present case the flow in this layer is completely defined by the 
boundary conditions on the outer wall. Therefore the matching condition with the 
outer flow (the extended core) is explicitly given in terms of these boundary 
conditions. When the outer wall is insulated, the decoupling of the Z$ layer from the 
inner flow is not possible, as pointed out by Homsy & Hudson (1969) and Matsuda 
& Takeda (1978). 

B.2. Matching u and w (the m u s s  flux) 
These shear layers are also required for matching the boundary conditions u = w = 0 
on the vertical walls and for smoothing u and w in regions of discontinuities of the 
horizontal boundary condition ('split disk ', point source). These layers transport an 
O(&) mass flux from the Ekman layers and into the extended core; therefore they 
are often treated in connection with the matching of the mass flux. Consequently, 
A = (EJH2)t in (B 12) gives the order of magnitude of the variables, and we can see 
that h (and consequently 0 and v) are not affected (to leading order) in these regions. 
Solutions of (B 7) for the flow field in these regions can be obtained as a straightforward 
extension of the solutions given by Greenspan (1969) and Hunter (1967). 
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